2641 lines
70 KiB
C
2641 lines
70 KiB
C
|
|
/* Copyright (c) 2004, 2017, Oracle and/or its affiliates. All rights reserved.
|
|||
|
|
|
|||
|
|
This program is free software; you can redistribute it and/or modify
|
|||
|
|
it under the terms of the GNU General Public License as published by
|
|||
|
|
the Free Software Foundation; version 2 of the License.
|
|||
|
|
|
|||
|
|
This program is distributed in the hope that it will be useful,
|
|||
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
|
GNU General Public License for more details.
|
|||
|
|
|
|||
|
|
You should have received a copy of the GNU General Public License
|
|||
|
|
along with this program; if not, write to the Free Software
|
|||
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
=======================================================================
|
|||
|
|
NOTE: this library implements SQL standard "exact numeric" type
|
|||
|
|
and is not at all generic, but rather intentinally crippled to
|
|||
|
|
follow the standard :)
|
|||
|
|
=======================================================================
|
|||
|
|
Quoting the standard
|
|||
|
|
(SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
|
|||
|
|
|
|||
|
|
4.4.2 Characteristics of numbers, page 27:
|
|||
|
|
|
|||
|
|
An exact numeric type has a precision P and a scale S. P is a positive
|
|||
|
|
integer that determines the number of significant digits in a
|
|||
|
|
particular radix R, where R is either 2 or 10. S is a non-negative
|
|||
|
|
integer. Every value of an exact numeric type of scale S is of the
|
|||
|
|
form n*10^{-S}, where n is an integer such that <EFBFBD>-R^P <= n <= R^P.
|
|||
|
|
|
|||
|
|
[...]
|
|||
|
|
|
|||
|
|
If an assignment of some number would result in a loss of its most
|
|||
|
|
significant digit, an exception condition is raised. If least
|
|||
|
|
significant digits are lost, implementation-defined rounding or
|
|||
|
|
truncating occurs, with no exception condition being raised.
|
|||
|
|
|
|||
|
|
[...]
|
|||
|
|
|
|||
|
|
Whenever an exact or approximate numeric value is assigned to an exact
|
|||
|
|
numeric value site, an approximation of its value that preserves
|
|||
|
|
leading significant digits after rounding or truncating is represented
|
|||
|
|
in the declared type of the target. The value is converted to have the
|
|||
|
|
precision and scale of the target. The choice of whether to truncate
|
|||
|
|
or round is implementation-defined.
|
|||
|
|
|
|||
|
|
[...]
|
|||
|
|
|
|||
|
|
All numeric values between the smallest and the largest value,
|
|||
|
|
inclusive, in a given exact numeric type have an approximation
|
|||
|
|
obtained by rounding or truncation for that type; it is
|
|||
|
|
implementation-defined which other numeric values have such
|
|||
|
|
approximations.
|
|||
|
|
|
|||
|
|
5.3 <literal>, page 143
|
|||
|
|
|
|||
|
|
<exact numeric literal> ::=
|
|||
|
|
<unsigned integer> [ <period> [ <unsigned integer> ] ]
|
|||
|
|
| <period> <unsigned integer>
|
|||
|
|
|
|||
|
|
6.1 <data type>, page 165:
|
|||
|
|
|
|||
|
|
19) The <scale> of an <exact numeric type> shall not be greater than
|
|||
|
|
the <precision> of the <exact numeric type>.
|
|||
|
|
|
|||
|
|
20) For the <exact numeric type>s DECIMAL and NUMERIC:
|
|||
|
|
|
|||
|
|
a) The maximum value of <precision> is implementation-defined.
|
|||
|
|
<precision> shall not be greater than this value.
|
|||
|
|
b) The maximum value of <scale> is implementation-defined. <scale>
|
|||
|
|
shall not be greater than this maximum value.
|
|||
|
|
|
|||
|
|
21) NUMERIC specifies the data type exact numeric, with the decimal
|
|||
|
|
precision and scale specified by the <precision> and <scale>.
|
|||
|
|
|
|||
|
|
22) DECIMAL specifies the data type exact numeric, with the decimal
|
|||
|
|
scale specified by the <scale> and the implementation-defined
|
|||
|
|
decimal precision equal to or greater than the value of the
|
|||
|
|
specified <precision>.
|
|||
|
|
|
|||
|
|
6.26 <numeric value expression>, page 241:
|
|||
|
|
|
|||
|
|
1) If the declared type of both operands of a dyadic arithmetic
|
|||
|
|
operator is exact numeric, then the declared type of the result is
|
|||
|
|
an implementation-defined exact numeric type, with precision and
|
|||
|
|
scale determined as follows:
|
|||
|
|
|
|||
|
|
a) Let S1 and S2 be the scale of the first and second operands
|
|||
|
|
respectively.
|
|||
|
|
b) The precision of the result of addition and subtraction is
|
|||
|
|
implementation-defined, and the scale is the maximum of S1 and S2.
|
|||
|
|
c) The precision of the result of multiplication is
|
|||
|
|
implementation-defined, and the scale is S1 + S2.
|
|||
|
|
d) The precision and scale of the result of division are
|
|||
|
|
implementation-defined.
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
#include <my_global.h>
|
|||
|
|
#include <m_ctype.h>
|
|||
|
|
#include <myisampack.h>
|
|||
|
|
#include <my_sys.h> /* for my_alloca */
|
|||
|
|
#include <m_string.h>
|
|||
|
|
#include <decimal.h>
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
|
|||
|
|
So one variable of type decimal_digit_t is limited:
|
|||
|
|
|
|||
|
|
0 < decimal_digit <= DIG_MAX < DIG_BASE
|
|||
|
|
|
|||
|
|
in the struct st_decimal_t:
|
|||
|
|
|
|||
|
|
intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
|
|||
|
|
before the point
|
|||
|
|
frac - number of decimal digits after the point
|
|||
|
|
buf is an array of decimal_digit_t's
|
|||
|
|
len is the length of buf (length of allocated space) in decimal_digit_t's,
|
|||
|
|
not in bytes
|
|||
|
|
*/
|
|||
|
|
typedef decimal_digit_t dec1;
|
|||
|
|
typedef longlong dec2;
|
|||
|
|
|
|||
|
|
#define DIG_PER_DEC1 9
|
|||
|
|
#define DIG_MASK 100000000
|
|||
|
|
#define DIG_BASE 1000000000
|
|||
|
|
#define DIG_MAX (DIG_BASE-1)
|
|||
|
|
#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE)
|
|||
|
|
#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
|
|||
|
|
static const dec1 powers10[DIG_PER_DEC1+1]={
|
|||
|
|
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
|
|||
|
|
static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
|
|||
|
|
static const dec1 frac_max[DIG_PER_DEC1-1]={
|
|||
|
|
900000000, 990000000, 999000000,
|
|||
|
|
999900000, 999990000, 999999000,
|
|||
|
|
999999900, 999999990 };
|
|||
|
|
|
|||
|
|
#define sanity(d) DBUG_ASSERT((d)->len >0)
|
|||
|
|
|
|||
|
|
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
|
|||
|
|
do \
|
|||
|
|
{ \
|
|||
|
|
if (unlikely(intg1+frac1 > (len))) \
|
|||
|
|
{ \
|
|||
|
|
if (unlikely(intg1 > (len))) \
|
|||
|
|
{ \
|
|||
|
|
intg1=(len); \
|
|||
|
|
frac1=0; \
|
|||
|
|
error=E_DEC_OVERFLOW; \
|
|||
|
|
} \
|
|||
|
|
else \
|
|||
|
|
{ \
|
|||
|
|
frac1=(len)-intg1; \
|
|||
|
|
error=E_DEC_TRUNCATED; \
|
|||
|
|
} \
|
|||
|
|
} \
|
|||
|
|
else \
|
|||
|
|
error=E_DEC_OK; \
|
|||
|
|
} while(0)
|
|||
|
|
|
|||
|
|
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
|
|||
|
|
do \
|
|||
|
|
{ \
|
|||
|
|
dec1 a=(from1)+(from2)+(carry); \
|
|||
|
|
DBUG_ASSERT((carry) <= 1); \
|
|||
|
|
if (((carry)= a >= DIG_BASE)) /* no division here! */ \
|
|||
|
|
a-=DIG_BASE; \
|
|||
|
|
(to)=a; \
|
|||
|
|
} while(0)
|
|||
|
|
|
|||
|
|
#define ADD2(to, from1, from2, carry) \
|
|||
|
|
do \
|
|||
|
|
{ \
|
|||
|
|
dec2 a=((dec2)(from1))+(from2)+(carry); \
|
|||
|
|
if (((carry)= a >= DIG_BASE)) \
|
|||
|
|
a-=DIG_BASE; \
|
|||
|
|
if (unlikely(a >= DIG_BASE)) \
|
|||
|
|
{ \
|
|||
|
|
a-=DIG_BASE; \
|
|||
|
|
carry++; \
|
|||
|
|
} \
|
|||
|
|
(to)=(dec1) a; \
|
|||
|
|
} while(0)
|
|||
|
|
|
|||
|
|
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
|
|||
|
|
do \
|
|||
|
|
{ \
|
|||
|
|
dec1 a=(from1)-(from2)-(carry); \
|
|||
|
|
if (((carry)= a < 0)) \
|
|||
|
|
a+=DIG_BASE; \
|
|||
|
|
(to)=a; \
|
|||
|
|
} while(0)
|
|||
|
|
|
|||
|
|
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
|
|||
|
|
do \
|
|||
|
|
{ \
|
|||
|
|
dec1 a=(from1)-(from2)-(carry); \
|
|||
|
|
if (((carry)= a < 0)) \
|
|||
|
|
a+=DIG_BASE; \
|
|||
|
|
if (unlikely(a < 0)) \
|
|||
|
|
{ \
|
|||
|
|
a+=DIG_BASE; \
|
|||
|
|
carry++; \
|
|||
|
|
} \
|
|||
|
|
(to)=a; \
|
|||
|
|
} while(0)
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
This is a direct loop unrolling of code that used to look like this:
|
|||
|
|
for (; *buf_beg < powers10[i--]; start++) ;
|
|||
|
|
|
|||
|
|
@param i start index
|
|||
|
|
@param val value to compare against list of powers of 10
|
|||
|
|
|
|||
|
|
@retval Number of leading zeroes that can be removed from fraction.
|
|||
|
|
|
|||
|
|
@note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
|
|||
|
|
Nice bonus: unrolled code is significantly faster.
|
|||
|
|
*/
|
|||
|
|
static inline int count_leading_zeroes(int i, dec1 val)
|
|||
|
|
{
|
|||
|
|
int ret= 0;
|
|||
|
|
switch (i)
|
|||
|
|
{
|
|||
|
|
/* @note Intentional fallthrough in all case labels */
|
|||
|
|
case 9: if (val >= 1000000000) break; ++ret; // Fall through.
|
|||
|
|
case 8: if (val >= 100000000) break; ++ret; // Fall through.
|
|||
|
|
case 7: if (val >= 10000000) break; ++ret; // Fall through.
|
|||
|
|
case 6: if (val >= 1000000) break; ++ret; // Fall through.
|
|||
|
|
case 5: if (val >= 100000) break; ++ret; // Fall through.
|
|||
|
|
case 4: if (val >= 10000) break; ++ret; // Fall through.
|
|||
|
|
case 3: if (val >= 1000) break; ++ret; // Fall through.
|
|||
|
|
case 2: if (val >= 100) break; ++ret; // Fall through.
|
|||
|
|
case 1: if (val >= 10) break; ++ret; // Fall through.
|
|||
|
|
case 0: if (val >= 1) break; ++ret; // Fall through.
|
|||
|
|
default: { DBUG_ASSERT(FALSE); }
|
|||
|
|
}
|
|||
|
|
return ret;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
This is a direct loop unrolling of code that used to look like this:
|
|||
|
|
for (; *buf_end % powers10[i++] == 0; stop--) ;
|
|||
|
|
|
|||
|
|
@param i start index
|
|||
|
|
@param val value to compare against list of powers of 10
|
|||
|
|
|
|||
|
|
@retval Number of trailing zeroes that can be removed from fraction.
|
|||
|
|
|
|||
|
|
@note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
|
|||
|
|
Nice bonus: unrolled code is significantly faster.
|
|||
|
|
*/
|
|||
|
|
static inline int count_trailing_zeroes(int i, dec1 val)
|
|||
|
|
{
|
|||
|
|
int ret= 0;
|
|||
|
|
switch(i)
|
|||
|
|
{
|
|||
|
|
/* @note Intentional fallthrough in all case labels */
|
|||
|
|
case 0: if ((val % 1) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 1: if ((val % 10) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 2: if ((val % 100) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 3: if ((val % 1000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 4: if ((val % 10000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 5: if ((val % 100000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 6: if ((val % 1000000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 7: if ((val % 10000000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 8: if ((val % 100000000) != 0) break; ++ret; // Fall through.
|
|||
|
|
case 9: if ((val % 1000000000) != 0) break; ++ret; // Fall through.
|
|||
|
|
default: { DBUG_ASSERT(FALSE); }
|
|||
|
|
}
|
|||
|
|
return ret;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Get maximum value for given precision and scale
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
max_decimal()
|
|||
|
|
precision/scale - see decimal_bin_size() below
|
|||
|
|
to - decimal where where the result will be stored
|
|||
|
|
to->buf and to->len must be set.
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
void max_decimal(int precision, int frac, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
int intpart;
|
|||
|
|
dec1 *buf= to->buf;
|
|||
|
|
DBUG_ASSERT(precision && precision >= frac);
|
|||
|
|
|
|||
|
|
to->sign= 0;
|
|||
|
|
if ((intpart= to->intg= (precision - frac)))
|
|||
|
|
{
|
|||
|
|
int firstdigits= intpart % DIG_PER_DEC1;
|
|||
|
|
if (firstdigits)
|
|||
|
|
*buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
|
|||
|
|
for(intpart/= DIG_PER_DEC1; intpart; intpart--)
|
|||
|
|
*buf++= DIG_MAX;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if ((to->frac= frac))
|
|||
|
|
{
|
|||
|
|
int lastdigits= frac % DIG_PER_DEC1;
|
|||
|
|
for(frac/= DIG_PER_DEC1; frac; frac--)
|
|||
|
|
*buf++= DIG_MAX;
|
|||
|
|
if (lastdigits)
|
|||
|
|
*buf= frac_max[lastdigits - 1];
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
static dec1 *remove_leading_zeroes(const decimal_t *from, int *intg_result)
|
|||
|
|
{
|
|||
|
|
int intg= from->intg, i;
|
|||
|
|
dec1 *buf0= from->buf;
|
|||
|
|
i= ((intg - 1) % DIG_PER_DEC1) + 1;
|
|||
|
|
while (intg > 0 && *buf0 == 0)
|
|||
|
|
{
|
|||
|
|
intg-= i;
|
|||
|
|
i= DIG_PER_DEC1;
|
|||
|
|
buf0++;
|
|||
|
|
}
|
|||
|
|
if (intg > 0)
|
|||
|
|
{
|
|||
|
|
intg-= count_leading_zeroes((intg - 1) % DIG_PER_DEC1, *buf0);
|
|||
|
|
DBUG_ASSERT(intg > 0);
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
intg=0;
|
|||
|
|
*intg_result= intg;
|
|||
|
|
return buf0;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Count actual length of fraction part (without ending zeroes)
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_actual_fraction()
|
|||
|
|
from number for processing
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_actual_fraction(decimal_t *from)
|
|||
|
|
{
|
|||
|
|
int frac= from->frac, i;
|
|||
|
|
dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
|
|||
|
|
|
|||
|
|
if (frac == 0)
|
|||
|
|
return 0;
|
|||
|
|
|
|||
|
|
i= ((frac - 1) % DIG_PER_DEC1 + 1);
|
|||
|
|
while (frac > 0 && *buf0 == 0)
|
|||
|
|
{
|
|||
|
|
frac-= i;
|
|||
|
|
i= DIG_PER_DEC1;
|
|||
|
|
buf0--;
|
|||
|
|
}
|
|||
|
|
if (frac > 0)
|
|||
|
|
{
|
|||
|
|
frac-=
|
|||
|
|
count_trailing_zeroes(DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1), *buf0);
|
|||
|
|
}
|
|||
|
|
return frac;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Convert decimal to its printable string representation
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal2string()
|
|||
|
|
from - value to convert
|
|||
|
|
to - points to buffer where string representation
|
|||
|
|
should be stored
|
|||
|
|
*to_len - in: size of to buffer (incl. terminating '\0')
|
|||
|
|
out: length of the actually written string (excl. '\0')
|
|||
|
|
fixed_precision - 0 if representation can be variable length and
|
|||
|
|
fixed_decimals will not be checked in this case.
|
|||
|
|
Put number as with fixed point position with this
|
|||
|
|
number of digits (sign counted and decimal point is
|
|||
|
|
counted)
|
|||
|
|
fixed_decimals - number digits after point.
|
|||
|
|
filler - character to fill gaps in case of fixed_precision > 0
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal2string(const decimal_t *from, char *to, int *to_len,
|
|||
|
|
int fixed_precision, int fixed_decimals,
|
|||
|
|
char filler)
|
|||
|
|
{
|
|||
|
|
/* {intg_len, frac_len} output widths; {intg, frac} places in input */
|
|||
|
|
int len, intg, frac= from->frac, i, intg_len, frac_len, fill;
|
|||
|
|
/* number digits before decimal point */
|
|||
|
|
int fixed_intg= (fixed_precision ?
|
|||
|
|
(fixed_precision - fixed_decimals) : 0);
|
|||
|
|
int error=E_DEC_OK;
|
|||
|
|
char *s=to;
|
|||
|
|
dec1 *buf, *buf0=from->buf, tmp;
|
|||
|
|
|
|||
|
|
DBUG_ASSERT(*to_len >= 2+from->sign);
|
|||
|
|
|
|||
|
|
/* removing leading zeroes */
|
|||
|
|
buf0= remove_leading_zeroes(from, &intg);
|
|||
|
|
if (unlikely(intg+frac==0))
|
|||
|
|
{
|
|||
|
|
intg=1;
|
|||
|
|
tmp=0;
|
|||
|
|
buf0=&tmp;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (!(intg_len= fixed_precision ? fixed_intg : intg))
|
|||
|
|
intg_len= 1;
|
|||
|
|
frac_len= fixed_precision ? fixed_decimals : frac;
|
|||
|
|
len= from->sign + intg_len + MY_TEST(frac) + frac_len;
|
|||
|
|
if (fixed_precision)
|
|||
|
|
{
|
|||
|
|
if (frac > fixed_decimals)
|
|||
|
|
{
|
|||
|
|
error= E_DEC_TRUNCATED;
|
|||
|
|
frac= fixed_decimals;
|
|||
|
|
}
|
|||
|
|
if (intg > fixed_intg)
|
|||
|
|
{
|
|||
|
|
error= E_DEC_OVERFLOW;
|
|||
|
|
intg= fixed_intg;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
|
|||
|
|
{
|
|||
|
|
int j= len - *to_len; /* excess printable chars */
|
|||
|
|
error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
If we need to cut more places than frac is wide, we'll end up
|
|||
|
|
dropping the decimal point as well. Account for this.
|
|||
|
|
*/
|
|||
|
|
if (frac && j >= frac + 1)
|
|||
|
|
j--;
|
|||
|
|
|
|||
|
|
if (j > frac)
|
|||
|
|
{
|
|||
|
|
intg_len= intg-= j-frac;
|
|||
|
|
frac= 0;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
frac-=j;
|
|||
|
|
frac_len= frac;
|
|||
|
|
len= from->sign + intg_len + MY_TEST(frac) + frac_len;
|
|||
|
|
}
|
|||
|
|
*to_len= len;
|
|||
|
|
s[len]= 0;
|
|||
|
|
|
|||
|
|
if (from->sign)
|
|||
|
|
*s++='-';
|
|||
|
|
|
|||
|
|
if (frac)
|
|||
|
|
{
|
|||
|
|
char *s1= s + intg_len;
|
|||
|
|
fill= frac_len - frac;
|
|||
|
|
buf=buf0+ROUND_UP(intg);
|
|||
|
|
*s1++='.';
|
|||
|
|
for (; frac>0; frac-=DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
dec1 x=*buf++;
|
|||
|
|
for (i= MY_MIN(frac, DIG_PER_DEC1); i; i--)
|
|||
|
|
{
|
|||
|
|
dec1 y=x/DIG_MASK;
|
|||
|
|
*s1++='0'+(uchar)y;
|
|||
|
|
x-=y*DIG_MASK;
|
|||
|
|
x*=10;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
for(; fill > 0; fill--)
|
|||
|
|
*s1++=filler;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
fill= intg_len - intg;
|
|||
|
|
if (intg == 0)
|
|||
|
|
fill--; /* symbol 0 before digital point */
|
|||
|
|
for(; fill > 0; fill--)
|
|||
|
|
*s++=filler;
|
|||
|
|
if (intg)
|
|||
|
|
{
|
|||
|
|
s+=intg;
|
|||
|
|
for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
dec1 x=*--buf;
|
|||
|
|
for (i= MY_MIN(intg, DIG_PER_DEC1); i; i--)
|
|||
|
|
{
|
|||
|
|
dec1 y=x/10;
|
|||
|
|
*--s='0'+(uchar)(x-y*10);
|
|||
|
|
x=y;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
*s= '0';
|
|||
|
|
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Return bounds of decimal digits in the number
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
digits_bounds()
|
|||
|
|
from - decimal number for processing
|
|||
|
|
start_result - index (from 0 ) of first decimal digits will
|
|||
|
|
be written by this address
|
|||
|
|
end_result - index of position just after last decimal digit
|
|||
|
|
be written by this address
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
|
|||
|
|
{
|
|||
|
|
int start, stop, i;
|
|||
|
|
dec1 *buf_beg= from->buf;
|
|||
|
|
dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
|
|||
|
|
dec1 *buf_end= end - 1;
|
|||
|
|
|
|||
|
|
/* find non-zero digit from number begining */
|
|||
|
|
while (buf_beg < end && *buf_beg == 0)
|
|||
|
|
buf_beg++;
|
|||
|
|
|
|||
|
|
if (buf_beg >= end)
|
|||
|
|
{
|
|||
|
|
/* it is zero */
|
|||
|
|
*start_result= *end_result= 0;
|
|||
|
|
return;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* find non-zero decimal digit from number begining */
|
|||
|
|
if (buf_beg == from->buf && from->intg)
|
|||
|
|
{
|
|||
|
|
start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
|
|||
|
|
i--;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
i= DIG_PER_DEC1 - 1;
|
|||
|
|
start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
|
|||
|
|
}
|
|||
|
|
if (buf_beg < end)
|
|||
|
|
start+= count_leading_zeroes(i, *buf_beg);
|
|||
|
|
|
|||
|
|
*start_result= start; /* index of first decimal digit (from 0) */
|
|||
|
|
|
|||
|
|
/* find non-zero digit at the end */
|
|||
|
|
while (buf_end > buf_beg && *buf_end == 0)
|
|||
|
|
buf_end--;
|
|||
|
|
/* find non-zero decimal digit from the end */
|
|||
|
|
if (buf_end == end - 1 && from->frac)
|
|||
|
|
{
|
|||
|
|
stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
|
|||
|
|
(i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
|
|||
|
|
i= DIG_PER_DEC1 - i + 1;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
|
|||
|
|
i= 1;
|
|||
|
|
}
|
|||
|
|
stop-= count_trailing_zeroes(i, *buf_end);
|
|||
|
|
*end_result= stop; /* index of position after last decimal digit (from 0) */
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Left shift for alignment of data in buffer
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
do_mini_left_shift()
|
|||
|
|
dec pointer to decimal number which have to be shifted
|
|||
|
|
shift number of decimal digits on which it should be shifted
|
|||
|
|
beg/end bounds of decimal digits (see digits_bounds())
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
Result fitting in the buffer should be garanted.
|
|||
|
|
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
|
|||
|
|
{
|
|||
|
|
dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
|
|||
|
|
dec1 *end= dec->buf + ROUND_UP(last) - 1;
|
|||
|
|
int c_shift= DIG_PER_DEC1 - shift;
|
|||
|
|
DBUG_ASSERT(from >= dec->buf);
|
|||
|
|
DBUG_ASSERT(end < dec->buf + dec->len);
|
|||
|
|
if (beg % DIG_PER_DEC1 < shift)
|
|||
|
|
*(from - 1)= (*from) / powers10[c_shift];
|
|||
|
|
for(; from < end; from++)
|
|||
|
|
*from= ((*from % powers10[c_shift]) * powers10[shift] +
|
|||
|
|
(*(from + 1)) / powers10[c_shift]);
|
|||
|
|
*from= (*from % powers10[c_shift]) * powers10[shift];
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Right shift for alignment of data in buffer
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
do_mini_left_shift()
|
|||
|
|
dec pointer to decimal number which have to be shifted
|
|||
|
|
shift number of decimal digits on which it should be shifted
|
|||
|
|
beg/end bounds of decimal digits (see digits_bounds())
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
Result fitting in the buffer should be garanted.
|
|||
|
|
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
|
|||
|
|
{
|
|||
|
|
dec1 *from= dec->buf + ROUND_UP(last) - 1;
|
|||
|
|
dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
|
|||
|
|
int c_shift= DIG_PER_DEC1 - shift;
|
|||
|
|
DBUG_ASSERT(from < dec->buf + dec->len);
|
|||
|
|
DBUG_ASSERT(end >= dec->buf);
|
|||
|
|
if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
|
|||
|
|
*(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
|
|||
|
|
for(; from > end; from--)
|
|||
|
|
*from= (*from / powers10[shift] +
|
|||
|
|
(*(from - 1) % powers10[shift]) * powers10[c_shift]);
|
|||
|
|
*from= *from / powers10[shift];
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Shift of decimal digits in given number (with rounding if it need)
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_shift()
|
|||
|
|
dec number to be shifted
|
|||
|
|
shift number of decimal positions
|
|||
|
|
shift > 0 means shift to left shift
|
|||
|
|
shift < 0 meand right shift
|
|||
|
|
NOTE
|
|||
|
|
In fact it is multipling on 10^shift.
|
|||
|
|
RETURN
|
|||
|
|
E_DEC_OK OK
|
|||
|
|
E_DEC_OVERFLOW operation lead to overflow, number is untoched
|
|||
|
|
E_DEC_TRUNCATED number was rounded to fit into buffer
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_shift(decimal_t *dec, int shift)
|
|||
|
|
{
|
|||
|
|
/* index of first non zero digit (all indexes from 0) */
|
|||
|
|
int beg;
|
|||
|
|
/* index of position after last decimal digit */
|
|||
|
|
int end;
|
|||
|
|
/* index of digit position just after point */
|
|||
|
|
int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
|
|||
|
|
/* new point position */
|
|||
|
|
int new_point= point + shift;
|
|||
|
|
/* number of digits in result */
|
|||
|
|
int digits_int, digits_frac;
|
|||
|
|
/* length of result and new fraction in big digits*/
|
|||
|
|
int new_len, new_frac_len;
|
|||
|
|
/* return code */
|
|||
|
|
int err= E_DEC_OK;
|
|||
|
|
int new_front;
|
|||
|
|
|
|||
|
|
if (shift == 0)
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
|
|||
|
|
digits_bounds(dec, &beg, &end);
|
|||
|
|
|
|||
|
|
if (beg == end)
|
|||
|
|
{
|
|||
|
|
decimal_make_zero(dec);
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
digits_int= new_point - beg;
|
|||
|
|
set_if_bigger(digits_int, 0);
|
|||
|
|
digits_frac= end - new_point;
|
|||
|
|
set_if_bigger(digits_frac, 0);
|
|||
|
|
|
|||
|
|
if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
|
|||
|
|
dec->len)
|
|||
|
|
{
|
|||
|
|
int lack= new_len - dec->len;
|
|||
|
|
int diff;
|
|||
|
|
|
|||
|
|
if (new_frac_len < lack)
|
|||
|
|
return E_DEC_OVERFLOW; /* lack more then we have in fraction */
|
|||
|
|
|
|||
|
|
/* cat off fraction part to allow new number to fit in our buffer */
|
|||
|
|
err= E_DEC_TRUNCATED;
|
|||
|
|
new_frac_len-= lack;
|
|||
|
|
diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
|
|||
|
|
/* Make rounding method as parameter? */
|
|||
|
|
decimal_round(dec, dec, end - point - diff, HALF_UP);
|
|||
|
|
end-= diff;
|
|||
|
|
digits_frac= new_frac_len * DIG_PER_DEC1;
|
|||
|
|
|
|||
|
|
if (end <= beg)
|
|||
|
|
{
|
|||
|
|
/*
|
|||
|
|
we lost all digits (they will be shifted out of buffer), so we can
|
|||
|
|
just return 0
|
|||
|
|
*/
|
|||
|
|
decimal_make_zero(dec);
|
|||
|
|
return E_DEC_TRUNCATED;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (shift % DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
int l_mini_shift, r_mini_shift, mini_shift;
|
|||
|
|
int do_left;
|
|||
|
|
/*
|
|||
|
|
Calculate left/right shift to align decimal digits inside our bug
|
|||
|
|
digits correctly
|
|||
|
|
*/
|
|||
|
|
if (shift > 0)
|
|||
|
|
{
|
|||
|
|
l_mini_shift= shift % DIG_PER_DEC1;
|
|||
|
|
r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
|
|||
|
|
/*
|
|||
|
|
It is left shift so prefer left shift, but if we have not place from
|
|||
|
|
left, we have to have it from right, because we checked length of
|
|||
|
|
result
|
|||
|
|
*/
|
|||
|
|
do_left= l_mini_shift <= beg;
|
|||
|
|
DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
r_mini_shift= (-shift) % DIG_PER_DEC1;
|
|||
|
|
l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
|
|||
|
|
/* see comment above */
|
|||
|
|
do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
|
|||
|
|
DBUG_ASSERT(!do_left || l_mini_shift <= beg);
|
|||
|
|
}
|
|||
|
|
if (do_left)
|
|||
|
|
{
|
|||
|
|
do_mini_left_shift(dec, l_mini_shift, beg, end);
|
|||
|
|
mini_shift= -l_mini_shift;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
do_mini_right_shift(dec, r_mini_shift, beg, end);
|
|||
|
|
mini_shift= r_mini_shift;
|
|||
|
|
}
|
|||
|
|
new_point+= mini_shift;
|
|||
|
|
/*
|
|||
|
|
If number is shifted and correctly aligned in buffer we can
|
|||
|
|
finish
|
|||
|
|
*/
|
|||
|
|
if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
dec->intg= digits_int;
|
|||
|
|
dec->frac= digits_frac;
|
|||
|
|
return err; /* already shifted as it should be */
|
|||
|
|
}
|
|||
|
|
beg+= mini_shift;
|
|||
|
|
end+= mini_shift;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* if new 'decimal front' is in first digit, we do not need move digits */
|
|||
|
|
if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
|
|||
|
|
new_front < 0)
|
|||
|
|
{
|
|||
|
|
/* need to move digits */
|
|||
|
|
int d_shift;
|
|||
|
|
dec1 *to, *barier;
|
|||
|
|
if (new_front > 0)
|
|||
|
|
{
|
|||
|
|
/* move left */
|
|||
|
|
d_shift= new_front / DIG_PER_DEC1;
|
|||
|
|
to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
|
|||
|
|
barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
|
|||
|
|
DBUG_ASSERT(to >= dec->buf);
|
|||
|
|
DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
|
|||
|
|
for(; to <= barier; to++)
|
|||
|
|
*to= *(to + d_shift);
|
|||
|
|
for(barier+= d_shift; to <= barier; to++)
|
|||
|
|
*to= 0;
|
|||
|
|
d_shift= -d_shift;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
/* move right */
|
|||
|
|
d_shift= (1 - new_front) / DIG_PER_DEC1;
|
|||
|
|
to= dec->buf + ROUND_UP(end) - 1 + d_shift;
|
|||
|
|
barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
|
|||
|
|
DBUG_ASSERT(to < dec->buf + dec->len);
|
|||
|
|
DBUG_ASSERT(barier - d_shift >= dec->buf);
|
|||
|
|
for(; to >= barier; to--)
|
|||
|
|
*to= *(to - d_shift);
|
|||
|
|
for(barier-= d_shift; to >= barier; to--)
|
|||
|
|
*to= 0;
|
|||
|
|
}
|
|||
|
|
d_shift*= DIG_PER_DEC1;
|
|||
|
|
beg+= d_shift;
|
|||
|
|
end+= d_shift;
|
|||
|
|
new_point+= d_shift;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
If there are gaps then fill ren with 0.
|
|||
|
|
|
|||
|
|
Only one of following 'for' loops will work becouse beg <= end
|
|||
|
|
*/
|
|||
|
|
beg= ROUND_UP(beg + 1) - 1;
|
|||
|
|
end= ROUND_UP(end) - 1;
|
|||
|
|
DBUG_ASSERT(new_point >= 0);
|
|||
|
|
|
|||
|
|
/* We don't want negative new_point below */
|
|||
|
|
if (new_point != 0)
|
|||
|
|
new_point= ROUND_UP(new_point) - 1;
|
|||
|
|
|
|||
|
|
if (new_point > end)
|
|||
|
|
{
|
|||
|
|
do
|
|||
|
|
{
|
|||
|
|
dec->buf[new_point]=0;
|
|||
|
|
} while (--new_point > end);
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
for (; new_point < beg; new_point++)
|
|||
|
|
dec->buf[new_point]= 0;
|
|||
|
|
}
|
|||
|
|
dec->intg= digits_int;
|
|||
|
|
dec->frac= digits_frac;
|
|||
|
|
return err;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Convert string to decimal
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
internal_str2decl()
|
|||
|
|
from - value to convert. Doesn't have to be \0 terminated!
|
|||
|
|
to - decimal where where the result will be stored
|
|||
|
|
to->buf and to->len must be set.
|
|||
|
|
end - Pointer to pointer to end of string. Will on return be
|
|||
|
|
set to the char after the last used character
|
|||
|
|
fixed - use to->intg, to->frac as limits for input number
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
to->intg and to->frac can be modified even when fixed=1
|
|||
|
|
(but only decreased, in this case)
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
|
|||
|
|
In case of E_DEC_FATAL_ERROR *to is set to decimal zero
|
|||
|
|
(to make error handling easier)
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int
|
|||
|
|
internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed)
|
|||
|
|
{
|
|||
|
|
const char *s= from, *s1, *endp, *end_of_string= *end;
|
|||
|
|
int i, intg, frac, error, intg1, frac1;
|
|||
|
|
dec1 x,*buf;
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
error= E_DEC_BAD_NUM; /* In case of bad number */
|
|||
|
|
while (s < end_of_string && my_isspace(&my_charset_latin1, *s))
|
|||
|
|
s++;
|
|||
|
|
if (s == end_of_string)
|
|||
|
|
goto fatal_error;
|
|||
|
|
|
|||
|
|
if ((to->sign= (*s == '-')))
|
|||
|
|
s++;
|
|||
|
|
else if (*s == '+')
|
|||
|
|
s++;
|
|||
|
|
|
|||
|
|
s1=s;
|
|||
|
|
while (s < end_of_string && my_isdigit(&my_charset_latin1, *s))
|
|||
|
|
s++;
|
|||
|
|
intg= (int) (s-s1);
|
|||
|
|
if (s < end_of_string && *s=='.')
|
|||
|
|
{
|
|||
|
|
endp= s+1;
|
|||
|
|
while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
|
|||
|
|
endp++;
|
|||
|
|
frac= (int) (endp - s - 1);
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
frac= 0;
|
|||
|
|
endp= s;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
*end= (char*) endp;
|
|||
|
|
|
|||
|
|
if (frac+intg == 0)
|
|||
|
|
goto fatal_error;
|
|||
|
|
|
|||
|
|
error= 0;
|
|||
|
|
if (fixed)
|
|||
|
|
{
|
|||
|
|
if (frac > to->frac)
|
|||
|
|
{
|
|||
|
|
error=E_DEC_TRUNCATED;
|
|||
|
|
frac=to->frac;
|
|||
|
|
}
|
|||
|
|
if (intg > to->intg)
|
|||
|
|
{
|
|||
|
|
error=E_DEC_OVERFLOW;
|
|||
|
|
intg=to->intg;
|
|||
|
|
}
|
|||
|
|
intg1=ROUND_UP(intg);
|
|||
|
|
frac1=ROUND_UP(frac);
|
|||
|
|
if (intg1+frac1 > to->len)
|
|||
|
|
{
|
|||
|
|
error= E_DEC_OOM;
|
|||
|
|
goto fatal_error;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
intg1=ROUND_UP(intg);
|
|||
|
|
frac1=ROUND_UP(frac);
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
|||
|
|
if (unlikely(error))
|
|||
|
|
{
|
|||
|
|
frac=frac1*DIG_PER_DEC1;
|
|||
|
|
if (error == E_DEC_OVERFLOW)
|
|||
|
|
intg=intg1*DIG_PER_DEC1;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
/* Error is guranteed to be set here */
|
|||
|
|
to->intg=intg;
|
|||
|
|
to->frac=frac;
|
|||
|
|
|
|||
|
|
buf=to->buf+intg1;
|
|||
|
|
s1=s;
|
|||
|
|
|
|||
|
|
for (x=0, i=0; intg; intg--)
|
|||
|
|
{
|
|||
|
|
x+= (*--s - '0')*powers10[i];
|
|||
|
|
|
|||
|
|
if (unlikely(++i == DIG_PER_DEC1))
|
|||
|
|
{
|
|||
|
|
*--buf=x;
|
|||
|
|
x=0;
|
|||
|
|
i=0;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
if (i)
|
|||
|
|
*--buf=x;
|
|||
|
|
|
|||
|
|
buf=to->buf+intg1;
|
|||
|
|
for (x=0, i=0; frac; frac--)
|
|||
|
|
{
|
|||
|
|
x= (*++s1 - '0') + x*10;
|
|||
|
|
|
|||
|
|
if (unlikely(++i == DIG_PER_DEC1))
|
|||
|
|
{
|
|||
|
|
*buf++=x;
|
|||
|
|
x=0;
|
|||
|
|
i=0;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
if (i)
|
|||
|
|
*buf=x*powers10[DIG_PER_DEC1-i];
|
|||
|
|
|
|||
|
|
/* Handle exponent */
|
|||
|
|
if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
|
|||
|
|
{
|
|||
|
|
int str_error;
|
|||
|
|
longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string,
|
|||
|
|
&str_error);
|
|||
|
|
|
|||
|
|
if (end_of_string != endp +1) /* If at least one digit */
|
|||
|
|
{
|
|||
|
|
*end= (char*) end_of_string;
|
|||
|
|
if (str_error > 0)
|
|||
|
|
{
|
|||
|
|
error= E_DEC_BAD_NUM;
|
|||
|
|
goto fatal_error;
|
|||
|
|
}
|
|||
|
|
if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
|
|||
|
|
{
|
|||
|
|
error= E_DEC_OVERFLOW;
|
|||
|
|
goto fatal_error;
|
|||
|
|
}
|
|||
|
|
if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
|
|||
|
|
{
|
|||
|
|
error= E_DEC_TRUNCATED;
|
|||
|
|
goto fatal_error;
|
|||
|
|
}
|
|||
|
|
if (error != E_DEC_OVERFLOW)
|
|||
|
|
error= decimal_shift(to, (int) exponent);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
/* Avoid returning negative zero, cfr. decimal_cmp() */
|
|||
|
|
if (to->sign && decimal_is_zero(to))
|
|||
|
|
to->sign= FALSE;
|
|||
|
|
return error;
|
|||
|
|
|
|||
|
|
fatal_error:
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Convert decimal to double
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal2double()
|
|||
|
|
from - value to convert
|
|||
|
|
to - result will be stored there
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal2double(const decimal_t *from, double *to)
|
|||
|
|
{
|
|||
|
|
char strbuf[FLOATING_POINT_BUFFER], *end;
|
|||
|
|
int len= sizeof(strbuf);
|
|||
|
|
int rc, error;
|
|||
|
|
|
|||
|
|
rc = decimal2string(from, strbuf, &len, 0, 0, 0);
|
|||
|
|
end= strbuf + len;
|
|||
|
|
|
|||
|
|
DBUG_PRINT("info", ("interm.: %s", strbuf));
|
|||
|
|
|
|||
|
|
*to= my_strtod(strbuf, &end, &error);
|
|||
|
|
|
|||
|
|
DBUG_PRINT("info", ("result: %f", *to));
|
|||
|
|
|
|||
|
|
return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Convert double to decimal
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
double2decimal()
|
|||
|
|
from - value to convert
|
|||
|
|
to - result will be stored there
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int double2decimal(double from, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
char buff[FLOATING_POINT_BUFFER], *end;
|
|||
|
|
int res;
|
|||
|
|
DBUG_ENTER("double2decimal");
|
|||
|
|
end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, (int)sizeof(buff) - 1, buff, NULL);
|
|||
|
|
res= string2decimal(buff, to, &end);
|
|||
|
|
DBUG_PRINT("exit", ("res: %d", res));
|
|||
|
|
DBUG_RETURN(res);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
static int ull2dec(ulonglong from, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
int intg1;
|
|||
|
|
int error= E_DEC_OK;
|
|||
|
|
ulonglong x= from;
|
|||
|
|
dec1 *buf;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
if (from == 0)
|
|||
|
|
intg1= 1;
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
/* Count the number of decimal_digit_t's we need. */
|
|||
|
|
for (intg1= 0; from != 0; intg1++, from/= DIG_BASE)
|
|||
|
|
;
|
|||
|
|
}
|
|||
|
|
if (unlikely(intg1 > to->len))
|
|||
|
|
{
|
|||
|
|
intg1= to->len;
|
|||
|
|
error= E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
to->frac= 0;
|
|||
|
|
to->intg= intg1 * DIG_PER_DEC1;
|
|||
|
|
|
|||
|
|
for (buf= to->buf + intg1; intg1; intg1--)
|
|||
|
|
{
|
|||
|
|
ulonglong y= x / DIG_BASE;
|
|||
|
|
*--buf=(dec1)(x - y * DIG_BASE);
|
|||
|
|
x= y;
|
|||
|
|
}
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int ulonglong2decimal(ulonglong from, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
to->sign=0;
|
|||
|
|
return ull2dec(from, to);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int longlong2decimal(longlong from, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
if ((to->sign= from < 0))
|
|||
|
|
return ull2dec(-from, to);
|
|||
|
|
return ull2dec(from, to);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal2ulonglong(decimal_t *from, ulonglong *to)
|
|||
|
|
{
|
|||
|
|
dec1 *buf=from->buf;
|
|||
|
|
ulonglong x=0;
|
|||
|
|
int intg, frac;
|
|||
|
|
|
|||
|
|
if (from->sign)
|
|||
|
|
{
|
|||
|
|
*to=0ULL;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
ulonglong y=x;
|
|||
|
|
x=x*DIG_BASE + *buf++;
|
|||
|
|
if (unlikely(y > ((ulonglong) ULLONG_MAX/DIG_BASE) || x < y))
|
|||
|
|
{
|
|||
|
|
*to=ULLONG_MAX;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
*to=x;
|
|||
|
|
for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
|
|||
|
|
if (*buf++)
|
|||
|
|
return E_DEC_TRUNCATED;
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal2longlong(decimal_t *from, longlong *to)
|
|||
|
|
{
|
|||
|
|
dec1 *buf=from->buf;
|
|||
|
|
longlong x=0;
|
|||
|
|
int intg, frac;
|
|||
|
|
|
|||
|
|
for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
longlong y=x;
|
|||
|
|
/*
|
|||
|
|
Attention: trick!
|
|||
|
|
we're calculating -|from| instead of |from| here
|
|||
|
|
because |LLONG_MIN| > LLONG_MAX
|
|||
|
|
so we can convert -9223372036854775808 correctly
|
|||
|
|
*/
|
|||
|
|
x=x*DIG_BASE - *buf++;
|
|||
|
|
if (unlikely(y < (LLONG_MIN/DIG_BASE) || x > y))
|
|||
|
|
{
|
|||
|
|
/*
|
|||
|
|
the decimal is bigger than any possible integer
|
|||
|
|
return border integer depending on the sign
|
|||
|
|
*/
|
|||
|
|
*to= from->sign ? LLONG_MIN : LLONG_MAX;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
/* boundary case: 9223372036854775808 */
|
|||
|
|
if (unlikely(from->sign==0 && x == LLONG_MIN))
|
|||
|
|
{
|
|||
|
|
*to= LLONG_MAX;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
*to=from->sign ? x : -x;
|
|||
|
|
for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
|
|||
|
|
if (*buf++)
|
|||
|
|
return E_DEC_TRUNCATED;
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
#define LLDIV_MIN -1000000000000000000LL
|
|||
|
|
#define LLDIV_MAX 1000000000000000000LL
|
|||
|
|
|
|||
|
|
/**
|
|||
|
|
Convert decimal value to lldiv_t value.
|
|||
|
|
@param from The decimal value to convert from.
|
|||
|
|
@param OUT to The lldiv_t variable to convert to.
|
|||
|
|
@return 0 on success, error code on error.
|
|||
|
|
*/
|
|||
|
|
int decimal2lldiv_t(const decimal_t *from, lldiv_t *to)
|
|||
|
|
{
|
|||
|
|
int int_part= ROUND_UP(from->intg);
|
|||
|
|
int frac_part= ROUND_UP(from->frac);
|
|||
|
|
if (int_part > 2)
|
|||
|
|
{
|
|||
|
|
to->rem= 0;
|
|||
|
|
to->quot= from->sign ? LLDIV_MIN : LLDIV_MAX;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
if (int_part == 2)
|
|||
|
|
to->quot= ((longlong) from->buf[0]) * DIG_BASE + from->buf[1];
|
|||
|
|
else if (int_part == 1)
|
|||
|
|
to->quot= from->buf[0];
|
|||
|
|
else
|
|||
|
|
to->quot= 0;
|
|||
|
|
to->rem= frac_part ? from->buf[int_part] : 0;
|
|||
|
|
if (from->sign)
|
|||
|
|
{
|
|||
|
|
to->quot= -to->quot;
|
|||
|
|
to->rem= -to->rem;
|
|||
|
|
}
|
|||
|
|
return 0;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
/**
|
|||
|
|
Convert double value to lldiv_t valie.
|
|||
|
|
@param from The double value to convert from.
|
|||
|
|
@param OUT to The lldit_t variable to convert to.
|
|||
|
|
@return 0 on success, error code on error.
|
|||
|
|
|
|||
|
|
Integer part goes into lld.quot.
|
|||
|
|
Fractional part multiplied to 1000000000 (10^9) goes to lld.rem.
|
|||
|
|
Typically used in datetime calculations to split seconds
|
|||
|
|
and nanoseconds.
|
|||
|
|
*/
|
|||
|
|
int double2lldiv_t(double nr, lldiv_t *lld)
|
|||
|
|
{
|
|||
|
|
if (nr > LLDIV_MAX)
|
|||
|
|
{
|
|||
|
|
lld->quot= LLDIV_MAX;
|
|||
|
|
lld->rem= 0;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
else if (nr < LLDIV_MIN)
|
|||
|
|
{
|
|||
|
|
lld->quot= LLDIV_MIN;
|
|||
|
|
lld->rem= 0;
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
/* Truncate fractional part toward zero and store into "quot" */
|
|||
|
|
lld->quot= (longlong) (nr > 0 ? floor(nr) : ceil(nr));
|
|||
|
|
/* Multiply reminder to 10^9 and store into "rem" */
|
|||
|
|
lld->rem= (longlong) rint((nr - (double) lld->quot) * 1000000000);
|
|||
|
|
/*
|
|||
|
|
Sometimes the expression "(double) 0.999999999xxx * (double) 10e9"
|
|||
|
|
gives 1,000,000,000 instead of 999,999,999 due to lack of double precision.
|
|||
|
|
The callers do not expect lld->rem to be greater than 999,999,999.
|
|||
|
|
Let's catch this corner case and put the "nanounit" (e.g. nanosecond)
|
|||
|
|
value in ldd->rem back into the valid range.
|
|||
|
|
*/
|
|||
|
|
if (lld->rem > 999999999LL)
|
|||
|
|
lld->rem= 999999999LL;
|
|||
|
|
else if (lld->rem < -999999999LL)
|
|||
|
|
lld->rem= -999999999LL;
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Convert decimal to its binary fixed-length representation
|
|||
|
|
two representations of the same length can be compared with memcmp
|
|||
|
|
with the correct -1/0/+1 result
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal2bin()
|
|||
|
|
from - value to convert
|
|||
|
|
to - points to buffer where string representation should be stored
|
|||
|
|
precision/scale - see decimal_bin_size() below
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|||
|
|
|
|||
|
|
DESCRIPTION
|
|||
|
|
for storage decimal numbers are converted to the "binary" format.
|
|||
|
|
|
|||
|
|
This format has the following properties:
|
|||
|
|
1. length of the binary representation depends on the {precision, scale}
|
|||
|
|
as provided by the caller and NOT on the intg/frac of the decimal to
|
|||
|
|
convert.
|
|||
|
|
2. binary representations of the same {precision, scale} can be compared
|
|||
|
|
with memcmp - with the same result as decimal_cmp() of the original
|
|||
|
|
decimals (not taking into account possible precision loss during
|
|||
|
|
conversion).
|
|||
|
|
|
|||
|
|
This binary format is as follows:
|
|||
|
|
1. First the number is converted to have a requested precision and scale.
|
|||
|
|
2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
|
|||
|
|
as is
|
|||
|
|
3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
|
|||
|
|
number of bytes (enough bytes to store this number of digits -
|
|||
|
|
see dig2bytes)
|
|||
|
|
4. same for frac - full decimal_digit_t's are stored as is,
|
|||
|
|
the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
|
|||
|
|
5. If the number is negative - every byte is inversed.
|
|||
|
|
5. The very first bit of the resulting byte array is inverted (because
|
|||
|
|
memcmp compares unsigned bytes, see property 2 above)
|
|||
|
|
|
|||
|
|
Example:
|
|||
|
|
|
|||
|
|
1234567890.1234
|
|||
|
|
|
|||
|
|
internally is represented as 3 decimal_digit_t's
|
|||
|
|
|
|||
|
|
1 234567890 123400000
|
|||
|
|
|
|||
|
|
(assuming we want a binary representation with precision=14, scale=4)
|
|||
|
|
in hex it's
|
|||
|
|
|
|||
|
|
00-00-00-01 0D-FB-38-D2 07-5A-EF-40
|
|||
|
|
|
|||
|
|
now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
|
|||
|
|
into binary representation as is:
|
|||
|
|
|
|||
|
|
|
|||
|
|
........... 0D-FB-38-D2 ............
|
|||
|
|
|
|||
|
|
First decimal_digit_t has only one decimal digit. We can store one digit in
|
|||
|
|
one byte, no need to waste four:
|
|||
|
|
|
|||
|
|
01 0D-FB-38-D2 ............
|
|||
|
|
|
|||
|
|
now, last digit. It's 123400000. We can store 1234 in two bytes:
|
|||
|
|
|
|||
|
|
01 0D-FB-38-D2 04-D2
|
|||
|
|
|
|||
|
|
So, we've packed 12 bytes number in 7 bytes.
|
|||
|
|
And now we invert the highest bit to get the final result:
|
|||
|
|
|
|||
|
|
81 0D FB 38 D2 04 D2
|
|||
|
|
|
|||
|
|
And for -1234567890.1234 it would be
|
|||
|
|
|
|||
|
|
7E F2 04 C7 2D FB 2D
|
|||
|
|
*/
|
|||
|
|
int decimal2bin(decimal_t *from, uchar *to, int precision, int frac)
|
|||
|
|
{
|
|||
|
|
dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
|
|||
|
|
int error=E_DEC_OK, intg=precision-frac,
|
|||
|
|
isize1, intg1, intg1x, from_intg,
|
|||
|
|
intg0=intg/DIG_PER_DEC1,
|
|||
|
|
frac0=frac/DIG_PER_DEC1,
|
|||
|
|
intg0x=intg-intg0*DIG_PER_DEC1,
|
|||
|
|
frac0x=frac-frac0*DIG_PER_DEC1,
|
|||
|
|
frac1=from->frac/DIG_PER_DEC1,
|
|||
|
|
frac1x=from->frac-frac1*DIG_PER_DEC1,
|
|||
|
|
isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
|
|||
|
|
fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
|
|||
|
|
fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
|
|||
|
|
const int orig_isize0= isize0;
|
|||
|
|
const int orig_fsize0= fsize0;
|
|||
|
|
uchar *orig_to= to;
|
|||
|
|
|
|||
|
|
buf1= remove_leading_zeroes(from, &from_intg);
|
|||
|
|
|
|||
|
|
if (unlikely(from_intg+fsize1==0))
|
|||
|
|
{
|
|||
|
|
mask=0; /* just in case */
|
|||
|
|
intg=1;
|
|||
|
|
buf1=&mask;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
intg1=from_intg/DIG_PER_DEC1;
|
|||
|
|
intg1x=from_intg-intg1*DIG_PER_DEC1;
|
|||
|
|
isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
|
|||
|
|
|
|||
|
|
if (intg < from_intg)
|
|||
|
|
{
|
|||
|
|
buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
|
|||
|
|
intg1=intg0; intg1x=intg0x;
|
|||
|
|
error=E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
else if (isize0 > isize1)
|
|||
|
|
{
|
|||
|
|
while (isize0-- > isize1)
|
|||
|
|
*to++= (char)mask;
|
|||
|
|
}
|
|||
|
|
if (fsize0 < fsize1)
|
|||
|
|
{
|
|||
|
|
frac1=frac0; frac1x=frac0x;
|
|||
|
|
error=E_DEC_TRUNCATED;
|
|||
|
|
}
|
|||
|
|
else if (fsize0 > fsize1 && frac1x)
|
|||
|
|
{
|
|||
|
|
if (frac0 == frac1)
|
|||
|
|
{
|
|||
|
|
frac1x=frac0x;
|
|||
|
|
fsize0= fsize1;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
frac1++;
|
|||
|
|
frac1x=0;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* intg1x part */
|
|||
|
|
if (intg1x)
|
|||
|
|
{
|
|||
|
|
int i=dig2bytes[intg1x];
|
|||
|
|
dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
|
|||
|
|
switch (i)
|
|||
|
|
{
|
|||
|
|
case 1: mi_int1store(to, x); break;
|
|||
|
|
case 2: mi_int2store(to, x); break;
|
|||
|
|
case 3: mi_int3store(to, x); break;
|
|||
|
|
case 4: mi_int4store(to, x); break;
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
to+=i;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* intg1+frac1 part */
|
|||
|
|
for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
|
|||
|
|
{
|
|||
|
|
dec1 x=*buf1++ ^ mask;
|
|||
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|||
|
|
mi_int4store(to, x);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* frac1x part */
|
|||
|
|
if (frac1x)
|
|||
|
|
{
|
|||
|
|
dec1 x;
|
|||
|
|
int i=dig2bytes[frac1x],
|
|||
|
|
lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
|
|||
|
|
while (frac1x < lim && dig2bytes[frac1x] == i)
|
|||
|
|
frac1x++;
|
|||
|
|
x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
|
|||
|
|
switch (i)
|
|||
|
|
{
|
|||
|
|
case 1: mi_int1store(to, x); break;
|
|||
|
|
case 2: mi_int2store(to, x); break;
|
|||
|
|
case 3: mi_int3store(to, x); break;
|
|||
|
|
case 4: mi_int4store(to, x); break;
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
to+=i;
|
|||
|
|
}
|
|||
|
|
if (fsize0 > fsize1)
|
|||
|
|
{
|
|||
|
|
uchar *to_end= orig_to + orig_fsize0 + orig_isize0;
|
|||
|
|
|
|||
|
|
while (fsize0-- > fsize1 && to < to_end)
|
|||
|
|
*to++= (uchar)mask;
|
|||
|
|
}
|
|||
|
|
orig_to[0]^= 0x80;
|
|||
|
|
|
|||
|
|
/* Check that we have written the whole decimal and nothing more */
|
|||
|
|
DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Restores decimal from its binary fixed-length representation
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
bin2decimal()
|
|||
|
|
from - value to convert
|
|||
|
|
to - result
|
|||
|
|
precision/scale - see decimal_bin_size() below
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
see decimal2bin()
|
|||
|
|
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale)
|
|||
|
|
{
|
|||
|
|
int error=E_DEC_OK, intg=precision-scale,
|
|||
|
|
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
|
|||
|
|
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
|
|||
|
|
intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
|
|||
|
|
dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
|
|||
|
|
const uchar *stop;
|
|||
|
|
uchar *d_copy;
|
|||
|
|
int bin_size= decimal_bin_size(precision, scale);
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
d_copy= (uchar*) my_alloca(bin_size);
|
|||
|
|
memcpy(d_copy, from, bin_size);
|
|||
|
|
d_copy[0]^= 0x80;
|
|||
|
|
from= d_copy;
|
|||
|
|
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
|||
|
|
if (unlikely(error))
|
|||
|
|
{
|
|||
|
|
if (intg1 < intg0+(intg0x>0))
|
|||
|
|
{
|
|||
|
|
from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
|
|||
|
|
frac0=frac0x=intg0x=0;
|
|||
|
|
intg0=intg1;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
frac0x=0;
|
|||
|
|
frac0=frac1;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
to->sign=(mask != 0);
|
|||
|
|
to->intg=intg0*DIG_PER_DEC1+intg0x;
|
|||
|
|
to->frac=frac0*DIG_PER_DEC1+frac0x;
|
|||
|
|
|
|||
|
|
if (intg0x)
|
|||
|
|
{
|
|||
|
|
int i=dig2bytes[intg0x];
|
|||
|
|
dec1 x= 0;
|
|||
|
|
switch (i)
|
|||
|
|
{
|
|||
|
|
case 1: x=mi_sint1korr(from); break;
|
|||
|
|
case 2: x=mi_sint2korr(from); break;
|
|||
|
|
case 3: x=mi_sint3korr(from); break;
|
|||
|
|
case 4: x=mi_sint4korr(from); break;
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
from+=i;
|
|||
|
|
*buf=x ^ mask;
|
|||
|
|
if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1])
|
|||
|
|
goto err;
|
|||
|
|
if (buf > to->buf || *buf != 0)
|
|||
|
|
buf++;
|
|||
|
|
else
|
|||
|
|
to->intg-=intg0x;
|
|||
|
|
}
|
|||
|
|
for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
|
|||
|
|
{
|
|||
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|||
|
|
*buf=mi_sint4korr(from) ^ mask;
|
|||
|
|
if (((uint32)*buf) > DIG_MAX)
|
|||
|
|
goto err;
|
|||
|
|
if (buf > to->buf || *buf != 0)
|
|||
|
|
buf++;
|
|||
|
|
else
|
|||
|
|
to->intg-=DIG_PER_DEC1;
|
|||
|
|
}
|
|||
|
|
DBUG_ASSERT(to->intg >=0);
|
|||
|
|
for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
|
|||
|
|
{
|
|||
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|||
|
|
*buf=mi_sint4korr(from) ^ mask;
|
|||
|
|
if (((uint32)*buf) > DIG_MAX)
|
|||
|
|
goto err;
|
|||
|
|
buf++;
|
|||
|
|
}
|
|||
|
|
if (frac0x)
|
|||
|
|
{
|
|||
|
|
int i=dig2bytes[frac0x];
|
|||
|
|
dec1 x= 0;
|
|||
|
|
switch (i)
|
|||
|
|
{
|
|||
|
|
case 1: x=mi_sint1korr(from); break;
|
|||
|
|
case 2: x=mi_sint2korr(from); break;
|
|||
|
|
case 3: x=mi_sint3korr(from); break;
|
|||
|
|
case 4: x=mi_sint4korr(from); break;
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
*buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
|
|||
|
|
if (((uint32)*buf) > DIG_MAX)
|
|||
|
|
goto err;
|
|||
|
|
buf++;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
No digits? We have read the number zero, of unspecified precision.
|
|||
|
|
Make it a proper zero, with non-zero precision.
|
|||
|
|
*/
|
|||
|
|
if (to->intg == 0 && to->frac == 0)
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return error;
|
|||
|
|
|
|||
|
|
err:
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return(E_DEC_BAD_NUM);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Returns the size of array to hold a decimal with given precision and scale
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
size in dec1
|
|||
|
|
(multiply by sizeof(dec1) to get the size if bytes)
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_size(int precision, int scale)
|
|||
|
|
{
|
|||
|
|
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
|||
|
|
return ROUND_UP(precision-scale)+ROUND_UP(scale);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Returns the size of array to hold a binary representation of a decimal
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
size in bytes
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_bin_size(int precision, int scale)
|
|||
|
|
{
|
|||
|
|
int intg=precision-scale,
|
|||
|
|
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
|
|||
|
|
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
|
|||
|
|
|
|||
|
|
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
|||
|
|
DBUG_ASSERT(intg0x >= 0);
|
|||
|
|
DBUG_ASSERT(intg0x <= DIG_PER_DEC1);
|
|||
|
|
DBUG_ASSERT(frac0x >= 0);
|
|||
|
|
DBUG_ASSERT(frac0x <= DIG_PER_DEC1);
|
|||
|
|
return intg0*sizeof(dec1)+dig2bytes[intg0x]+
|
|||
|
|
frac0*sizeof(dec1)+dig2bytes[frac0x];
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Rounds the decimal to "scale" digits
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_round()
|
|||
|
|
from - decimal to round,
|
|||
|
|
to - result buffer. from==to is allowed
|
|||
|
|
scale - to what position to round. can be negative!
|
|||
|
|
mode - round to nearest even or truncate
|
|||
|
|
|
|||
|
|
NOTES
|
|||
|
|
scale can be negative !
|
|||
|
|
one TRUNCATED error (line XXX below) isn't treated very logical :(
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int
|
|||
|
|
decimal_round(const decimal_t *from, decimal_t *to, int scale,
|
|||
|
|
decimal_round_mode mode)
|
|||
|
|
{
|
|||
|
|
int frac0=scale>0 ? ROUND_UP(scale) : (scale + 1)/DIG_PER_DEC1,
|
|||
|
|
frac1=ROUND_UP(from->frac), round_digit= 0,
|
|||
|
|
intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
|
|||
|
|
|
|||
|
|
dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
|
|||
|
|
int first_dig;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
switch (mode) {
|
|||
|
|
case HALF_UP:
|
|||
|
|
case HALF_EVEN: round_digit=5; break;
|
|||
|
|
case CEILING: round_digit= from->sign ? 10 : 0; break;
|
|||
|
|
case FLOOR: round_digit= from->sign ? 0 : 10; break;
|
|||
|
|
case TRUNCATE: round_digit=10; break;
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
|
|||
|
|
For internal testing here (ifdef MAIN) we always use len == 100/4
|
|||
|
|
*/
|
|||
|
|
DBUG_ASSERT(from->len == to->len);
|
|||
|
|
|
|||
|
|
if (unlikely(frac0+intg0 > len))
|
|||
|
|
{
|
|||
|
|
frac0=len-intg0;
|
|||
|
|
scale=frac0*DIG_PER_DEC1;
|
|||
|
|
error=E_DEC_TRUNCATED;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (scale+from->intg < 0)
|
|||
|
|
{
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (to != from)
|
|||
|
|
{
|
|||
|
|
dec1 *p0= buf0 + intg0 + MY_MAX(frac1, frac0);
|
|||
|
|
dec1 *p1= buf1 + intg0 + MY_MAX(frac1, frac0);
|
|||
|
|
|
|||
|
|
DBUG_ASSERT(p0 - buf0 <= len);
|
|||
|
|
DBUG_ASSERT(p1 - buf1 <= len);
|
|||
|
|
|
|||
|
|
while (buf0 < p0)
|
|||
|
|
*(--p1) = *(--p0);
|
|||
|
|
|
|||
|
|
buf0=to->buf;
|
|||
|
|
buf1=to->buf;
|
|||
|
|
to->sign=from->sign;
|
|||
|
|
to->intg= MY_MIN(intg0, len) * DIG_PER_DEC1;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (frac0 > frac1)
|
|||
|
|
{
|
|||
|
|
buf1+=intg0+frac1;
|
|||
|
|
while (frac0-- > frac1)
|
|||
|
|
*buf1++=0;
|
|||
|
|
goto done;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (scale >= from->frac)
|
|||
|
|
goto done; /* nothing to do */
|
|||
|
|
|
|||
|
|
buf0+=intg0+frac0-1;
|
|||
|
|
buf1+=intg0+frac0-1;
|
|||
|
|
if (scale == frac0*DIG_PER_DEC1)
|
|||
|
|
{
|
|||
|
|
int do_inc= FALSE;
|
|||
|
|
DBUG_ASSERT(frac0+intg0 >= 0);
|
|||
|
|
switch (round_digit) {
|
|||
|
|
case 0:
|
|||
|
|
{
|
|||
|
|
dec1 *p0= buf0 + (frac1-frac0);
|
|||
|
|
for (; p0 > buf0; p0--)
|
|||
|
|
{
|
|||
|
|
if (*p0)
|
|||
|
|
{
|
|||
|
|
do_inc= TRUE;
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
case 5:
|
|||
|
|
{
|
|||
|
|
x= buf0[1]/DIG_MASK;
|
|||
|
|
do_inc= (x>5) || ((x == 5) &&
|
|||
|
|
(mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
default:
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
if (do_inc)
|
|||
|
|
{
|
|||
|
|
if (frac0+intg0>0)
|
|||
|
|
(*buf1)++;
|
|||
|
|
else
|
|||
|
|
*(++buf1)=DIG_BASE;
|
|||
|
|
}
|
|||
|
|
else if (frac0+intg0==0)
|
|||
|
|
{
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
/* TODO - fix this code as it won't work for CEILING mode */
|
|||
|
|
int pos=frac0*DIG_PER_DEC1-scale-1;
|
|||
|
|
DBUG_ASSERT(frac0+intg0 > 0);
|
|||
|
|
x=*buf1 / powers10[pos];
|
|||
|
|
y=x % 10;
|
|||
|
|
if (y > round_digit ||
|
|||
|
|
(round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
|
|||
|
|
x+=10;
|
|||
|
|
*buf1=powers10[pos]*(x-y);
|
|||
|
|
}
|
|||
|
|
/*
|
|||
|
|
In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
|
|||
|
|
the buffer are as follows.
|
|||
|
|
|
|||
|
|
Before <1, 5e8>
|
|||
|
|
After <2, 5e8>
|
|||
|
|
|
|||
|
|
Hence we need to set the 2nd field to 0.
|
|||
|
|
The same holds if we round 1.5e-9 to 2e-9.
|
|||
|
|
*/
|
|||
|
|
if (frac0 < frac1)
|
|||
|
|
{
|
|||
|
|
dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
|
|||
|
|
dec1 *end= to->buf + len;
|
|||
|
|
|
|||
|
|
while (buf < end)
|
|||
|
|
*buf++=0;
|
|||
|
|
}
|
|||
|
|
if (*buf1 >= DIG_BASE)
|
|||
|
|
{
|
|||
|
|
carry=1;
|
|||
|
|
*buf1-=DIG_BASE;
|
|||
|
|
while (carry && --buf1 >= to->buf)
|
|||
|
|
ADD(*buf1, *buf1, 0, carry);
|
|||
|
|
if (unlikely(carry))
|
|||
|
|
{
|
|||
|
|
/* shifting the number to create space for new digit */
|
|||
|
|
if (frac0+intg0 >= len)
|
|||
|
|
{
|
|||
|
|
frac0--;
|
|||
|
|
scale=frac0*DIG_PER_DEC1;
|
|||
|
|
error=E_DEC_TRUNCATED; /* XXX */
|
|||
|
|
}
|
|||
|
|
for (buf1=to->buf + intg0 + MY_MAX(frac0, 0); buf1 > to->buf; buf1--)
|
|||
|
|
{
|
|||
|
|
/* Avoid out-of-bounds write. */
|
|||
|
|
if (buf1 < to->buf + len)
|
|||
|
|
buf1[0]=buf1[-1];
|
|||
|
|
else
|
|||
|
|
error= E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
*buf1=1;
|
|||
|
|
/* We cannot have more than 9 * 9 = 81 digits. */
|
|||
|
|
if (to->intg < len * DIG_PER_DEC1)
|
|||
|
|
to->intg++;
|
|||
|
|
else
|
|||
|
|
error= E_DEC_OVERFLOW;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
for (;;)
|
|||
|
|
{
|
|||
|
|
if (likely(*buf1))
|
|||
|
|
break;
|
|||
|
|
if (buf1-- == to->buf)
|
|||
|
|
{
|
|||
|
|
/* making 'zero' with the proper scale */
|
|||
|
|
dec1 *p0= to->buf + frac0 + 1;
|
|||
|
|
to->intg=1;
|
|||
|
|
to->frac= MY_MAX(scale, 0);
|
|||
|
|
to->sign= 0;
|
|||
|
|
for (buf1= to->buf; buf1<p0; buf1++)
|
|||
|
|
*buf1= 0;
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* Here we check 999.9 -> 1000 case when we need to increase intg */
|
|||
|
|
first_dig= to->intg % DIG_PER_DEC1;
|
|||
|
|
if (first_dig && (*buf1 >= powers10[first_dig]))
|
|||
|
|
to->intg++;
|
|||
|
|
|
|||
|
|
if (scale<0)
|
|||
|
|
scale=0;
|
|||
|
|
|
|||
|
|
done:
|
|||
|
|
DBUG_ASSERT(to->intg <= (len * DIG_PER_DEC1));
|
|||
|
|
to->frac=scale;
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Returns the size of the result of the operation
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_result_size()
|
|||
|
|
from1 - operand of the unary operation or first operand of the
|
|||
|
|
binary operation
|
|||
|
|
from2 - second operand of the binary operation
|
|||
|
|
op - operation. one char '+', '-', '*', '/' are allowed
|
|||
|
|
others may be added later
|
|||
|
|
param - extra param to the operation. unused for '+', '-', '*'
|
|||
|
|
scale increment for '/'
|
|||
|
|
|
|||
|
|
NOTE
|
|||
|
|
returned valued may be larger than the actual buffer requred
|
|||
|
|
in the operation, as decimal_result_size, by design, operates on
|
|||
|
|
precision/scale values only and not on the actual decimal number
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
size of to->buf array in dec1 elements. to get size in bytes
|
|||
|
|
multiply by sizeof(dec1)
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
|
|||
|
|
{
|
|||
|
|
switch (op) {
|
|||
|
|
case '-':
|
|||
|
|
return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
|
|||
|
|
ROUND_UP(MY_MAX(from1->frac, from2->frac));
|
|||
|
|
case '+':
|
|||
|
|
return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) +
|
|||
|
|
ROUND_UP(MY_MAX(from1->frac, from2->frac));
|
|||
|
|
case '*':
|
|||
|
|
return ROUND_UP(from1->intg+from2->intg)+
|
|||
|
|
ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
|
|||
|
|
case '/':
|
|||
|
|
return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
|
|||
|
|
default: DBUG_ASSERT(0);
|
|||
|
|
}
|
|||
|
|
return -1; /* shut up the warning */
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
|||
|
|
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
|
|||
|
|
frac0= MY_MAX(frac1, frac2), intg0= MY_MAX(intg1, intg2), error;
|
|||
|
|
dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
/* is there a need for extra word because of carry ? */
|
|||
|
|
x=intg1 > intg2 ? from1->buf[0] :
|
|||
|
|
intg2 > intg1 ? from2->buf[0] :
|
|||
|
|
from1->buf[0] + from2->buf[0] ;
|
|||
|
|
if (unlikely(x > DIG_MAX-1)) /* yes, there is */
|
|||
|
|
{
|
|||
|
|
intg0++;
|
|||
|
|
to->buf[0]=0; /* safety */
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
|||
|
|
if (unlikely(error == E_DEC_OVERFLOW))
|
|||
|
|
{
|
|||
|
|
max_decimal(to->len * DIG_PER_DEC1, 0, to);
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
buf0=to->buf+intg0+frac0;
|
|||
|
|
|
|||
|
|
to->sign=from1->sign;
|
|||
|
|
to->frac= MY_MAX(from1->frac, from2->frac);
|
|||
|
|
to->intg=intg0*DIG_PER_DEC1;
|
|||
|
|
if (unlikely(error))
|
|||
|
|
{
|
|||
|
|
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
|||
|
|
set_if_smaller(frac1, frac0);
|
|||
|
|
set_if_smaller(frac2, frac0);
|
|||
|
|
set_if_smaller(intg1, intg0);
|
|||
|
|
set_if_smaller(intg2, intg0);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* part 1 - max(frac) ... min (frac) */
|
|||
|
|
if (frac1 > frac2)
|
|||
|
|
{
|
|||
|
|
buf1=from1->buf+intg1+frac1;
|
|||
|
|
stop=from1->buf+intg1+frac2;
|
|||
|
|
buf2=from2->buf+intg2+frac2;
|
|||
|
|
stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
buf1=from2->buf+intg2+frac2;
|
|||
|
|
stop=from2->buf+intg2+frac1;
|
|||
|
|
buf2=from1->buf+intg1+frac1;
|
|||
|
|
stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
|
|||
|
|
}
|
|||
|
|
while (buf1 > stop)
|
|||
|
|
*--buf0=*--buf1;
|
|||
|
|
|
|||
|
|
/* part 2 - min(frac) ... min(intg) */
|
|||
|
|
carry=0;
|
|||
|
|
while (buf1 > stop2)
|
|||
|
|
{
|
|||
|
|
ADD(*--buf0, *--buf1, *--buf2, carry);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* part 3 - min(intg) ... max(intg) */
|
|||
|
|
buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
|
|||
|
|
((stop=from2->buf)+intg2-intg1) ;
|
|||
|
|
while (buf1 > stop)
|
|||
|
|
{
|
|||
|
|
ADD(*--buf0, *--buf1, 0, carry);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (unlikely(carry))
|
|||
|
|
*--buf0=1;
|
|||
|
|
DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
|
|||
|
|
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* to=from1-from2.
|
|||
|
|
if to==0, return -1/0/+1 - the result of the comparison */
|
|||
|
|
static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
|||
|
|
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
|
|||
|
|
int frac0= MY_MAX(frac1, frac2), error;
|
|||
|
|
dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0;
|
|||
|
|
|
|||
|
|
/* let carry:=1 if from2 > from1 */
|
|||
|
|
start1=buf1=from1->buf; stop1=buf1+intg1;
|
|||
|
|
start2=buf2=from2->buf; stop2=buf2+intg2;
|
|||
|
|
if (unlikely(*buf1 == 0))
|
|||
|
|
{
|
|||
|
|
while (buf1 < stop1 && *buf1 == 0)
|
|||
|
|
buf1++;
|
|||
|
|
start1=buf1;
|
|||
|
|
intg1= (int) (stop1-buf1);
|
|||
|
|
}
|
|||
|
|
if (unlikely(*buf2 == 0))
|
|||
|
|
{
|
|||
|
|
while (buf2 < stop2 && *buf2 == 0)
|
|||
|
|
buf2++;
|
|||
|
|
start2=buf2;
|
|||
|
|
intg2= (int) (stop2-buf2);
|
|||
|
|
}
|
|||
|
|
if (intg2 > intg1)
|
|||
|
|
carry=1;
|
|||
|
|
else if (intg2 == intg1)
|
|||
|
|
{
|
|||
|
|
dec1 *end1= stop1 + (frac1 - 1);
|
|||
|
|
dec1 *end2= stop2 + (frac2 - 1);
|
|||
|
|
while (unlikely((buf1 <= end1) && (*end1 == 0)))
|
|||
|
|
end1--;
|
|||
|
|
while (unlikely((buf2 <= end2) && (*end2 == 0)))
|
|||
|
|
end2--;
|
|||
|
|
frac1= (int) (end1 - stop1) + 1;
|
|||
|
|
frac2= (int) (end2 - stop2) + 1;
|
|||
|
|
while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
|
|||
|
|
buf1++, buf2++;
|
|||
|
|
if (buf1 <= end1)
|
|||
|
|
{
|
|||
|
|
if (buf2 <= end2)
|
|||
|
|
carry= *buf2 > *buf1;
|
|||
|
|
else
|
|||
|
|
carry= 0;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
if (buf2 <= end2)
|
|||
|
|
carry=1;
|
|||
|
|
else /* short-circuit everything: from1 == from2 */
|
|||
|
|
{
|
|||
|
|
if (to == 0) /* decimal_cmp() */
|
|||
|
|
return 0;
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (to == 0) /* decimal_cmp() */
|
|||
|
|
return carry == from1->sign ? 1 : -1;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
to->sign=from1->sign;
|
|||
|
|
|
|||
|
|
/* ensure that always from1 > from2 (and intg1 >= intg2) */
|
|||
|
|
if (carry)
|
|||
|
|
{
|
|||
|
|
swap_variables(const decimal_t *, from1, from2);
|
|||
|
|
swap_variables(dec1 *,start1, start2);
|
|||
|
|
swap_variables(int,intg1,intg2);
|
|||
|
|
swap_variables(int,frac1,frac2);
|
|||
|
|
to->sign= 1 - to->sign;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
|
|||
|
|
buf0=to->buf+intg1+frac0;
|
|||
|
|
|
|||
|
|
to->frac= MY_MAX(from1->frac, from2->frac);
|
|||
|
|
to->intg=intg1*DIG_PER_DEC1;
|
|||
|
|
if (unlikely(error))
|
|||
|
|
{
|
|||
|
|
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
|||
|
|
set_if_smaller(frac1, frac0);
|
|||
|
|
set_if_smaller(frac2, frac0);
|
|||
|
|
set_if_smaller(intg2, intg1);
|
|||
|
|
}
|
|||
|
|
carry=0;
|
|||
|
|
|
|||
|
|
/* part 1 - max(frac) ... min (frac) */
|
|||
|
|
if (frac1 > frac2)
|
|||
|
|
{
|
|||
|
|
buf1=start1+intg1+frac1;
|
|||
|
|
stop1=start1+intg1+frac2;
|
|||
|
|
buf2=start2+intg2+frac2;
|
|||
|
|
while (frac0-- > frac1)
|
|||
|
|
*--buf0=0;
|
|||
|
|
while (buf1 > stop1)
|
|||
|
|
*--buf0=*--buf1;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
buf1=start1+intg1+frac1;
|
|||
|
|
buf2=start2+intg2+frac2;
|
|||
|
|
stop2=start2+intg2+frac1;
|
|||
|
|
while (frac0-- > frac2)
|
|||
|
|
*--buf0=0;
|
|||
|
|
while (buf2 > stop2)
|
|||
|
|
{
|
|||
|
|
SUB(*--buf0, 0, *--buf2, carry);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* part 2 - min(frac) ... intg2 */
|
|||
|
|
while (buf2 > start2)
|
|||
|
|
{
|
|||
|
|
SUB(*--buf0, *--buf1, *--buf2, carry);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* part 3 - intg2 ... intg1 */
|
|||
|
|
while (carry && buf1 > start1)
|
|||
|
|
{
|
|||
|
|
SUB(*--buf0, *--buf1, 0, carry);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
while (buf1 > start1)
|
|||
|
|
*--buf0=*--buf1;
|
|||
|
|
|
|||
|
|
while (buf0 > to->buf)
|
|||
|
|
*--buf0=0;
|
|||
|
|
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal_intg(const decimal_t *from)
|
|||
|
|
{
|
|||
|
|
int res;
|
|||
|
|
remove_leading_zeroes(from, &res);
|
|||
|
|
return res;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
if (likely(from1->sign == from2->sign))
|
|||
|
|
return do_add(from1, from2, to);
|
|||
|
|
return do_sub(from1, from2, to);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
if (likely(from1->sign == from2->sign))
|
|||
|
|
return do_sub(from1, from2, to);
|
|||
|
|
return do_add(from1, from2, to);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
|
|||
|
|
{
|
|||
|
|
if (likely(from1->sign == from2->sign))
|
|||
|
|
return do_sub(from1, from2, 0);
|
|||
|
|
|
|||
|
|
// Reject negative zero, cfr. internal_str2dec()
|
|||
|
|
DBUG_ASSERT(!(decimal_is_zero(from1) && from1->sign));
|
|||
|
|
DBUG_ASSERT(!(decimal_is_zero(from2) && from2->sign));
|
|||
|
|
|
|||
|
|
return from1->sign > from2->sign ? -1 : 1;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
int decimal_is_zero(const decimal_t *from)
|
|||
|
|
{
|
|||
|
|
dec1 *buf1=from->buf,
|
|||
|
|
*end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
|
|||
|
|
while (buf1 < end)
|
|||
|
|
if (*buf1++)
|
|||
|
|
return 0;
|
|||
|
|
return 1;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
multiply two decimals
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_mul()
|
|||
|
|
from1, from2 - factors
|
|||
|
|
to - product
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
|
|||
|
|
|
|||
|
|
NOTES
|
|||
|
|
in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
|
|||
|
|
and 63-digit number will take only 7 dec1 words (basically a 7-digit
|
|||
|
|
"base 999999999" number). Thus there's no need in fast multiplication
|
|||
|
|
algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
|
|||
|
|
method.
|
|||
|
|
|
|||
|
|
XXX if this library is to be used with huge numbers of thousands of
|
|||
|
|
digits, fast multiplication must be implemented.
|
|||
|
|
*/
|
|||
|
|
int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
|||
|
|
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
|
|||
|
|
intg0=ROUND_UP(from1->intg+from2->intg),
|
|||
|
|
frac0=frac1+frac2, error, iii, jjj, d_to_move;
|
|||
|
|
dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
|
|||
|
|
*start2, *stop2, *stop1, *start0, carry;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
iii= intg0; /* save 'ideal' values */
|
|||
|
|
jjj= frac0;
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */
|
|||
|
|
to->sign= from1->sign != from2->sign;
|
|||
|
|
to->frac= from1->frac + from2->frac; /* store size in digits */
|
|||
|
|
set_if_smaller(to->frac, NOT_FIXED_DEC);
|
|||
|
|
to->intg=intg0*DIG_PER_DEC1;
|
|||
|
|
|
|||
|
|
if (unlikely(error))
|
|||
|
|
{
|
|||
|
|
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
|||
|
|
set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
|
|||
|
|
if (unlikely(iii > intg0)) /* bounded integer-part */
|
|||
|
|
{
|
|||
|
|
iii-=intg0;
|
|||
|
|
jjj= iii >> 1;
|
|||
|
|
intg1-= jjj;
|
|||
|
|
intg2-=iii-jjj;
|
|||
|
|
frac1=frac2=0; /* frac0 is already 0 here */
|
|||
|
|
}
|
|||
|
|
else /* bounded fract part */
|
|||
|
|
{
|
|||
|
|
jjj-=frac0;
|
|||
|
|
iii=jjj >> 1;
|
|||
|
|
if (frac1 <= frac2)
|
|||
|
|
{
|
|||
|
|
frac1-= iii;
|
|||
|
|
frac2-=jjj-iii;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
frac2-= iii;
|
|||
|
|
frac1-=jjj-iii;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
start0=to->buf+intg0+frac0-1;
|
|||
|
|
start2=buf2+frac2-1;
|
|||
|
|
stop1=buf1-intg1;
|
|||
|
|
stop2=buf2-intg2;
|
|||
|
|
|
|||
|
|
memset(to->buf, 0, (intg0+frac0)*sizeof(dec1));
|
|||
|
|
|
|||
|
|
for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
|
|||
|
|
{
|
|||
|
|
carry=0;
|
|||
|
|
for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
|
|||
|
|
{
|
|||
|
|
dec1 hi, lo;
|
|||
|
|
dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
|
|||
|
|
hi=(dec1)(p/DIG_BASE);
|
|||
|
|
lo=(dec1)(p-((dec2)hi)*DIG_BASE);
|
|||
|
|
ADD2(*buf0, *buf0, lo, carry);
|
|||
|
|
carry+=hi;
|
|||
|
|
}
|
|||
|
|
if (carry)
|
|||
|
|
{
|
|||
|
|
if (buf0 < to->buf)
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
ADD2(*buf0, *buf0, 0, carry);
|
|||
|
|
}
|
|||
|
|
for (buf0--; carry; buf0--)
|
|||
|
|
{
|
|||
|
|
if (buf0 < to->buf)
|
|||
|
|
return E_DEC_OVERFLOW;
|
|||
|
|
ADD(*buf0, *buf0, 0, carry);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* Now we have to check for -0.000 case */
|
|||
|
|
if (to->sign)
|
|||
|
|
{
|
|||
|
|
dec1 *buf= to->buf;
|
|||
|
|
dec1 *end= to->buf + intg0 + frac0;
|
|||
|
|
DBUG_ASSERT(buf != end);
|
|||
|
|
for (;;)
|
|||
|
|
{
|
|||
|
|
if (*buf)
|
|||
|
|
break;
|
|||
|
|
if (++buf == end)
|
|||
|
|
{
|
|||
|
|
/* We got decimal zero */
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
buf1= to->buf;
|
|||
|
|
d_to_move= intg0 + ROUND_UP(to->frac);
|
|||
|
|
while (!*buf1 && (to->intg > DIG_PER_DEC1))
|
|||
|
|
{
|
|||
|
|
buf1++;
|
|||
|
|
to->intg-= DIG_PER_DEC1;
|
|||
|
|
d_to_move--;
|
|||
|
|
}
|
|||
|
|
if (to->buf < buf1)
|
|||
|
|
{
|
|||
|
|
dec1 *cur_d= to->buf;
|
|||
|
|
for (; d_to_move--; cur_d++, buf1++)
|
|||
|
|
*cur_d= *buf1;
|
|||
|
|
}
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
naive division algorithm (Knuth's Algorithm D in 4.3.1) -
|
|||
|
|
it's ok for short numbers
|
|||
|
|
also we're using alloca() to allocate a temporary buffer
|
|||
|
|
|
|||
|
|
XXX if this library is to be used with huge numbers of thousands of
|
|||
|
|
digits, fast division must be implemented and alloca should be
|
|||
|
|
changed to malloc (or at least fallback to malloc if alloca() fails)
|
|||
|
|
but then, decimal_mul() should be rewritten too :(
|
|||
|
|
*/
|
|||
|
|
static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
|
|||
|
|
decimal_t *to, decimal_t *mod, int scale_incr)
|
|||
|
|
{
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
frac* - number of digits in fractional part of the number
|
|||
|
|
prec* - precision of the number
|
|||
|
|
intg* - number of digits in the integer part
|
|||
|
|
buf* - buffer having the actual number
|
|||
|
|
All variables ending with 0 - like frac0, intg0 etc are
|
|||
|
|
for the final result. Similarly frac1, intg1 etc are for
|
|||
|
|
the first number and frac2, intg2 etc are for the second number
|
|||
|
|
*/
|
|||
|
|
int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
|
|||
|
|
frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
|
|||
|
|
error= 0, i, intg0, frac0, len1, len2,
|
|||
|
|
dintg, /* Holds the estimate of number of integer digits in final result */
|
|||
|
|
div_mod=(!mod) /*true if this is division */;
|
|||
|
|
dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *start1, *stop1,
|
|||
|
|
*start2, *stop2, *stop0 ,norm2, carry, dcarry, *tmp1;
|
|||
|
|
dec2 norm_factor, x, guess, y;
|
|||
|
|
|
|||
|
|
if (mod)
|
|||
|
|
to=mod;
|
|||
|
|
|
|||
|
|
sanity(to);
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
removing all the leading zeroes in the second number. Leading zeroes are
|
|||
|
|
added later to the result.
|
|||
|
|
*/
|
|||
|
|
i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
|
|||
|
|
while (prec2 > 0 && *buf2 == 0)
|
|||
|
|
{
|
|||
|
|
prec2-= i;
|
|||
|
|
i= DIG_PER_DEC1;
|
|||
|
|
buf2++;
|
|||
|
|
}
|
|||
|
|
if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
|
|||
|
|
return E_DEC_DIV_ZERO;
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Remove the remanining zeroes . For ex: for 0.000000000001
|
|||
|
|
the above while loop removes 9 zeroes and the result will have 0.0001
|
|||
|
|
these remaining zeroes are removed here
|
|||
|
|
*/
|
|||
|
|
prec2-= count_leading_zeroes((prec2 - 1) % DIG_PER_DEC1, *buf2);
|
|||
|
|
DBUG_ASSERT(prec2 > 0);
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
Do the same for the first number. Remove the leading zeroes.
|
|||
|
|
Check if the number is actually 0. Then remove the remaining zeroes.
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
i=((prec1-1) % DIG_PER_DEC1)+1;
|
|||
|
|
while (prec1 > 0 && *buf1 == 0)
|
|||
|
|
{
|
|||
|
|
prec1-=i;
|
|||
|
|
i=DIG_PER_DEC1;
|
|||
|
|
buf1++;
|
|||
|
|
}
|
|||
|
|
if (prec1 <= 0)
|
|||
|
|
{ /* short-circuit everything: from1 == 0 */
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
return E_DEC_OK;
|
|||
|
|
}
|
|||
|
|
prec1-= count_leading_zeroes((prec1-1) % DIG_PER_DEC1, *buf1);
|
|||
|
|
DBUG_ASSERT(prec1 > 0);
|
|||
|
|
|
|||
|
|
/* let's fix scale_incr, taking into account frac1,frac2 increase */
|
|||
|
|
if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
|
|||
|
|
scale_incr=0;
|
|||
|
|
|
|||
|
|
/* Calculate the integer digits in final result */
|
|||
|
|
dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
|
|||
|
|
if (dintg < 0)
|
|||
|
|
{
|
|||
|
|
dintg/=DIG_PER_DEC1;
|
|||
|
|
intg0=0;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
intg0=ROUND_UP(dintg);
|
|||
|
|
if (mod)
|
|||
|
|
{
|
|||
|
|
/* we're calculating N1 % N2.
|
|||
|
|
The result will have
|
|||
|
|
frac=max(frac1, frac2), as for subtraction
|
|||
|
|
intg=intg2
|
|||
|
|
*/
|
|||
|
|
to->sign=from1->sign;
|
|||
|
|
to->frac= MY_MAX(from1->frac, from2->frac);
|
|||
|
|
frac0=0;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
/*
|
|||
|
|
we're calculating N1/N2. N1 is in the buf1, has prec1 digits
|
|||
|
|
N2 is in the buf2, has prec2 digits. Scales are frac1 and
|
|||
|
|
frac2 accordingly.
|
|||
|
|
Thus, the result will have
|
|||
|
|
frac = ROUND_UP(frac1+frac2+scale_incr)
|
|||
|
|
and
|
|||
|
|
intg = (prec1-frac1) - (prec2-frac2) + 1
|
|||
|
|
prec = intg+frac
|
|||
|
|
*/
|
|||
|
|
frac0=ROUND_UP(frac1+frac2+scale_incr);
|
|||
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
|||
|
|
to->sign=from1->sign != from2->sign;
|
|||
|
|
to->intg=intg0*DIG_PER_DEC1;
|
|||
|
|
to->frac=frac0*DIG_PER_DEC1;
|
|||
|
|
}
|
|||
|
|
buf0=to->buf;
|
|||
|
|
stop0=buf0+intg0+frac0;
|
|||
|
|
if (likely(div_mod))
|
|||
|
|
while (dintg++ < 0 && buf0 < &to->buf[to->len])
|
|||
|
|
{
|
|||
|
|
*buf0++=0;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
|
|||
|
|
set_if_bigger(len1, 3);
|
|||
|
|
if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1))))
|
|||
|
|
return E_DEC_OOM;
|
|||
|
|
memcpy(tmp1, buf1, i*sizeof(dec1));
|
|||
|
|
memset(tmp1+i, 0, (len1-i)*sizeof(dec1));
|
|||
|
|
|
|||
|
|
start1=tmp1;
|
|||
|
|
stop1=start1+len1;
|
|||
|
|
start2=buf2;
|
|||
|
|
stop2=buf2+ROUND_UP(prec2)-1;
|
|||
|
|
|
|||
|
|
/* removing end zeroes */
|
|||
|
|
while (*stop2 == 0 && stop2 >= start2)
|
|||
|
|
stop2--;
|
|||
|
|
len2= (int) (stop2++ - start2);
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
calculating norm2 (normalized *start2) - we need *start2 to be large
|
|||
|
|
(at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
|
|||
|
|
normalize input numbers (as we don't make a copy of the divisor).
|
|||
|
|
Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
|
|||
|
|
on the fly for the purpose of guesstimation only.
|
|||
|
|
It's also faster, as we're saving on normalization of buf2
|
|||
|
|
*/
|
|||
|
|
norm_factor=DIG_BASE/(*start2+1);
|
|||
|
|
norm2=(dec1)(norm_factor*start2[0]);
|
|||
|
|
if (likely(len2>0))
|
|||
|
|
norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
|
|||
|
|
|
|||
|
|
if (*start1 < *start2)
|
|||
|
|
dcarry=*start1++;
|
|||
|
|
else
|
|||
|
|
dcarry=0;
|
|||
|
|
|
|||
|
|
/* main loop */
|
|||
|
|
for (; buf0 < stop0; buf0++)
|
|||
|
|
{
|
|||
|
|
/* short-circuit, if possible */
|
|||
|
|
if (unlikely(dcarry == 0 && *start1 < *start2))
|
|||
|
|
guess=0;
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
/* D3: make a guess */
|
|||
|
|
x=start1[0]+((dec2)dcarry)*DIG_BASE;
|
|||
|
|
y=start1[1];
|
|||
|
|
guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
|
|||
|
|
if (unlikely(guess >= DIG_BASE))
|
|||
|
|
guess=DIG_BASE-1;
|
|||
|
|
if (likely(len2>0))
|
|||
|
|
{
|
|||
|
|
/* hmm, this is a suspicious trick - I removed normalization here */
|
|||
|
|
if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
|
|||
|
|
guess--;
|
|||
|
|
if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
|
|||
|
|
guess--;
|
|||
|
|
DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/* D4: multiply and subtract */
|
|||
|
|
buf2=stop2;
|
|||
|
|
buf1=start1+len2;
|
|||
|
|
DBUG_ASSERT(buf1 < stop1);
|
|||
|
|
for (carry=0; buf2 > start2; buf1--)
|
|||
|
|
{
|
|||
|
|
dec1 hi, lo;
|
|||
|
|
x=guess * (*--buf2);
|
|||
|
|
hi=(dec1)(x/DIG_BASE);
|
|||
|
|
lo=(dec1)(x-((dec2)hi)*DIG_BASE);
|
|||
|
|
SUB2(*buf1, *buf1, lo, carry);
|
|||
|
|
carry+=hi;
|
|||
|
|
}
|
|||
|
|
carry= dcarry < carry;
|
|||
|
|
|
|||
|
|
/* D5: check the remainder */
|
|||
|
|
if (unlikely(carry))
|
|||
|
|
{
|
|||
|
|
/* D6: correct the guess */
|
|||
|
|
guess--;
|
|||
|
|
buf2=stop2;
|
|||
|
|
buf1=start1+len2;
|
|||
|
|
for (carry=0; buf2 > start2; buf1--)
|
|||
|
|
{
|
|||
|
|
ADD(*buf1, *buf1, *--buf2, carry);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
if (likely(div_mod))
|
|||
|
|
{
|
|||
|
|
DBUG_ASSERT(buf0 < to->buf + to->len);
|
|||
|
|
*buf0=(dec1)guess;
|
|||
|
|
}
|
|||
|
|
dcarry= *start1;
|
|||
|
|
start1++;
|
|||
|
|
}
|
|||
|
|
if (mod)
|
|||
|
|
{
|
|||
|
|
/*
|
|||
|
|
now the result is in tmp1, it has
|
|||
|
|
intg=prec1-frac1 if there were no leading zeroes.
|
|||
|
|
If leading zeroes were present, they have been removed
|
|||
|
|
earlier. We need to now add them back to the result.
|
|||
|
|
frac=max(frac1, frac2)=to->frac
|
|||
|
|
*/
|
|||
|
|
if (dcarry)
|
|||
|
|
*--start1=dcarry;
|
|||
|
|
buf0=to->buf;
|
|||
|
|
/* Calculate the final result's integer digits */
|
|||
|
|
dintg= (prec1 - frac1) - ((start1 - tmp1) * DIG_PER_DEC1);
|
|||
|
|
if (dintg < 0)
|
|||
|
|
{
|
|||
|
|
/* If leading zeroes in the fractional part were earlier stripped */
|
|||
|
|
intg0= dintg / DIG_PER_DEC1;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
intg0= ROUND_UP(dintg);
|
|||
|
|
frac0=ROUND_UP(to->frac);
|
|||
|
|
error=E_DEC_OK;
|
|||
|
|
if (unlikely(frac0==0 && intg0==0))
|
|||
|
|
{
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
goto done;
|
|||
|
|
}
|
|||
|
|
if (intg0<=0)
|
|||
|
|
{
|
|||
|
|
/* Add back the leading zeroes that were earlier stripped */
|
|||
|
|
if (unlikely(-intg0 >= to->len))
|
|||
|
|
{
|
|||
|
|
decimal_make_zero(to);
|
|||
|
|
error=E_DEC_TRUNCATED;
|
|||
|
|
goto done;
|
|||
|
|
}
|
|||
|
|
stop1= start1 + frac0 + intg0;
|
|||
|
|
frac0+=intg0;
|
|||
|
|
to->intg=0;
|
|||
|
|
while (intg0++ < 0)
|
|||
|
|
*buf0++=0;
|
|||
|
|
}
|
|||
|
|
else
|
|||
|
|
{
|
|||
|
|
if (unlikely(intg0 > to->len))
|
|||
|
|
{
|
|||
|
|
frac0=0;
|
|||
|
|
intg0=to->len;
|
|||
|
|
error=E_DEC_OVERFLOW;
|
|||
|
|
goto done;
|
|||
|
|
}
|
|||
|
|
DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
|
|||
|
|
stop1=start1+frac0+intg0;
|
|||
|
|
to->intg= MY_MIN(intg0 * DIG_PER_DEC1, from2->intg);
|
|||
|
|
}
|
|||
|
|
if (unlikely(intg0+frac0 > to->len))
|
|||
|
|
{
|
|||
|
|
stop1-=frac0+intg0-to->len;
|
|||
|
|
frac0=to->len-intg0;
|
|||
|
|
to->frac=frac0*DIG_PER_DEC1;
|
|||
|
|
error=E_DEC_TRUNCATED;
|
|||
|
|
}
|
|||
|
|
DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
|
|||
|
|
while (start1 < stop1)
|
|||
|
|
*buf0++=*start1++;
|
|||
|
|
}
|
|||
|
|
done:
|
|||
|
|
tmp1= remove_leading_zeroes(to, &to->intg);
|
|||
|
|
if(to->buf != tmp1)
|
|||
|
|
memmove(to->buf, tmp1,
|
|||
|
|
(ROUND_UP(to->intg) + ROUND_UP(to->frac)) * sizeof(dec1));
|
|||
|
|
return error;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
division of two decimals
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_div()
|
|||
|
|
from1 - dividend
|
|||
|
|
from2 - divisor
|
|||
|
|
to - quotient
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
|||
|
|
|
|||
|
|
NOTES
|
|||
|
|
see do_div_mod()
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int
|
|||
|
|
decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
|
|||
|
|
int scale_incr)
|
|||
|
|
{
|
|||
|
|
return do_div_mod(from1, from2, to, 0, scale_incr);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
/*
|
|||
|
|
modulus
|
|||
|
|
|
|||
|
|
SYNOPSIS
|
|||
|
|
decimal_mod()
|
|||
|
|
from1 - dividend
|
|||
|
|
from2 - divisor
|
|||
|
|
to - modulus
|
|||
|
|
|
|||
|
|
RETURN VALUE
|
|||
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
|||
|
|
|
|||
|
|
NOTES
|
|||
|
|
see do_div_mod()
|
|||
|
|
|
|||
|
|
DESCRIPTION
|
|||
|
|
the modulus R in R = M mod N
|
|||
|
|
|
|||
|
|
is defined as
|
|||
|
|
|
|||
|
|
0 <= |R| < |M|
|
|||
|
|
sign R == sign M
|
|||
|
|
R = M - k*N, where k is integer
|
|||
|
|
|
|||
|
|
thus, there's no requirement for M or N to be integers
|
|||
|
|
*/
|
|||
|
|
|
|||
|
|
int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
|
|||
|
|
{
|
|||
|
|
return do_div_mod(from1, from2, 0, to, 0);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
#ifdef MAIN
|
|||
|
|
/*
|
|||
|
|
The main() program has been converted into a unit test.
|
|||
|
|
*/
|
|||
|
|
#endif
|